TAM-EDA: Multivariate t Distribution, Archive and Mutation Based Estimation of Distribution Algorithm
نویسندگان
چکیده
منابع مشابه
Estimation Methods for the Multivariate t Distribution
The known estimation and simulation methods for multivariate t distributions are reviewed. A review of selected applications is also provided. We believe that this review will serve as an important reference and encourage further research activities in the area.
متن کاملfault location in power distribution networks using matching algorithm
چکیده رساله/پایان نامه : تاکنون روشهای متعددی در ارتباط با مکان یابی خطا در شبکه انتقال ارائه شده است. استفاده مستقیم از این روشها در شبکه توزیع به دلایلی همچون وجود انشعابهای متعدد، غیر یکنواختی فیدرها (خطوط کابلی، خطوط هوایی، سطح مقطع متفاوت انشعاب ها و تنه اصلی فیدر)، نامتعادلی (عدم جابجا شدگی خطوط، بارهای تکفاز و سه فاز)، ثابت نبودن بار و اندازه گیری مقادیر ولتاژ و جریان فقط در ابتدای...
A Novel Parameter Estimation Algorithm for the Multivariate t-Distribution and Its Application to Computer Vision
We present a novel algorithm for approximating the parameters of a multivariate t-distribution. At the expense of a slightly decreased accuracy in the estimates, the proposed algorithm is significantly faster and easier to implement compared to the maximum likelihood estimates computed using the expectation-maximization algorithm. The formulation of the proposed algorithm also provides theoreti...
متن کاملNiching an Archive-based Gaussian Estimation of Distribution Algorithm via Adaptive Clustering
As a model-based evolutionary algorithm, estimation of distribution algorithm (EDA) possesses unique characteristics and has been widely applied to global optimization. However, traditional Gaussian EDA (GEDA) may suffer from premature convergence and has a high risk of falling into local optimum when dealing with multimodal problem. In this paper, we first attempts to improve the performance o...
متن کاملGA-EDA: Hybrid Evolutionary Algorithm Using Genetic and Estimation of Distribution Algorithms
Evolutionary techniques are one of the most successful paradigms in the field of optimization. In this paper we present a new approach, named GAEDA, which is a new hybrid algorithm based on genetic and estimation of distribution algorithms. The original objective is to get benefits from both approaches. In order to perform an evaluation of this new approach a selection of synthetic optimization...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ANZIAM Journal
سال: 2014
ISSN: 1445-8810
DOI: 10.21914/anziamj.v54i0.6365